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ABSTRACT 

It is shown that certain capacities associated with potentials of functions in 
Lebesgue classes are non-increasing under orthogonal projection of sets. This 
inequality is then used to discuss continuity of traces of potentials on sub- 
spaces of possibly low dimension. The case of principal interest is the Bessel 
potential. 

Introduction 

In  this paper  we will discuss Bessel potentials g , , f  on the Euclidean space 

R", where f is in a Lebesgue space .~ep, 1 < p < oo. The work will involve the 

capacity B,.p which has been intensively studied in [1] and [3]. 

I f  M c R n is an affine subspace with d im M > n - ~p then B,~p(M) > 0 and it 

makes sense to speak o f  the trace of  g , , f  on  M. In  fact the trace on M will be 

almost continuous in the sense of  B,,p (B,,p-a.c.). On the other  hand,  if 

dim M __< n -  ~p then B,.p(M) --- 0 and in general no trace will exist on  M. 

However  this does not  mean  that  we cannot  make interesting statements concern-  

ing traces on subspaces o f  low dimension. 

Let d im M > n - ~p and let M-L be the largest linear subspace or thogonal  to M. 

We will show, among  other  things, g, , f is a continuous function on the affine 

subspaces x + MJ', for x B,,p-a.e. in M. This reveals an interesting duality when 

coupled with the statement,  g, , f is B,.p-a.c. on the affine subspaces x + M, for 

every x in M • Thus, if n - ~p < d i m M  < ap then the potential  is B,.p-a.c. on 

x + M,  for every x in M • and cont inuous  on x + M, for x B,,p-a.e. in M • 
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1. Preliminaries 

N n will denote the real Euclidean space of points x = (xl,  ...,xn), x~ real, with 

inner product (x,  y )  = ]gi% lx,yi and norm Ix 1. If  A, B c R" then by A + B we 

mean the vector sum of A and B. We call M c R" an affine subspace, if M is the 

translate of a linear subspace. We say that R ~ is the affine direct sum of affine 

subspaces M and N, if R ~ is the direct sum of translates of M and N. If  M is an 

affine subspace then M • will be the largest linear subspace orthogonal to M, in 

the sense that x, y ~ M and z~ M ~ implies ( x -  y , z ) =  O. 

Let A c N n be locally compact and .d = A U {2} its one point compactification. 

By C~o(A ) we mean the Banach space of continuous functions q~: A ~ N 1 with 

limx~q~(x) = 0, normed by maxal ~b(x)I" By c~c(A) we mean the subspace of 

compact support functions in Cs ). c~u~(A ) will be the Frechet space of all 

continuous q~: A + R ~, defined by semi-norms maxKI ~b(x)I' K c A and compact. 

dt'+ = d /+(N ~) will be the cone of positive Radon measures on N ~ and will 

carry the topology of the weak dual of Cgc(R~ ). Each element of dt'+ can be 

identified with the completion of a positive Borel measure which is finite on every 

compact subset of ~ .  I f  # ~ JCl + then I[/~ [11 is the total variation of/~, which may 

be infinite. Integrals with respect to Lebesgue measure are denoted by .f... dx 

and notations which don' t  specifically mention a measure refer to Lebesgue 

measure, d will be the a-algebra of sets which are measurable relative to every 

# ~ ,//r and if A e d then by d/+(A),  we mean the cone of measures in d /+  

carried by A. 

For A, a Lebesgue measurable set, and 1 < p < oo, Ls will be the usual 

space of Lebesgue measurable functions f :  A ~ [ - oo, + oo ] with semi-norm 

Ilfll ;, = IS(x)l'dx < + .  

~ + ( A )  is the cone of positive functions in ~p(A). In the case A = R n we write 

.~~ and Ils II, 
By a kernel k we mean a function k: R ' ~  [0, + oo ] such that k is Borel 

measurable. Relative to k and ~ p  we define a capacity Ck,p as follows. If  A c R" 

then 

where f ~  A a+ and 

q,,(A): inf:llfll , 

k *f(x) ~ 1 for all x ~ A. 
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An f satisfying the above conditions is called a test function for Ck,p(Z), These 

capacities have been studied extensively in [3], where it is assumed that k is lower 

semi-continuous. However, this assumption can be dropped in the case of con- 

volutions. Properties of Ck, will be given as needed; however we will state here 

that Ck,, is an outer measure. We may then introduce the familiar concepts of 

almost everywhere (Ck,,-a.e.) almost uniform convergence (Ck,,-a.u.) and almost 

continuous (Ck p-a.c.). 

We will be particularly interested in the Bessel kernels g~, c( > O, defined as the 

inverse Fourier Transform of 

~.(~) = (2n)-"/2(1 + 1412) - ' 'z .  

g. is spherically symmetric, decreasing in I x ] and integrable (see section 212]). 

For Co.,. we write B.,.. 

Closely associated with Ck.. is another capacity, Ck, p. If A ~ d we define 

ck.(a)=supollvll,, 
where v e,//t'+(A) and 

LI k,v b _<-1 
A v satisfying the above conditions is called a test measure for Ck,,(A). 

2. Monotonieity of energy 

If  #salt  '+, k is a kernel and 49 is a function satisfying the conditions stated in 

Lemma 1, then we call 

f 49(k*12) (x)dx 

an energy integral. In this section we study this integral under orthogonal pro- 

jection of the measure /1. 

LEMMA 1. Let 
49: [0, + ~ ] -~ [0, + ~ ] ,  49(0) = O, 

be continuous, non-decreasing and let (9I [0, + oo ) be convex (finite valued). Let 

kq: R x ~ [0, + m) (q = 1,... ,Q) 

be even functions in ego(R1 ) and kol [0, + ~ )  be non-increasing. 

Then if tl~(q = 1, . . . ,Q) and t 1 are arbitrary points in R 1, 

f<~ ) f< ) 49 E k~(x-tlq) dx < 49 ~ kq(x - t l )  dx .  
q = l  q = l  
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PROOF. We assume that  Q > 1, for  the case Q = 1 is trivial. N o w  suppose 

that  the labelling is such that  

r/1 < r/2 < ... < r/o-. 

Let  r/o,_ 1 < r/' < r/o,; we will show that  

f (o 1 ) I = r k q ( x  - rlq ) + ko,(x - tlo,) dx < 
\q= 1 

There is no  harm in assuming r/' = - r/o,, for we may introduce the new variable 

y = x - ( t l ' + r l o , ) / 2 .  I f  we rewrite l and I I  as . . . d x +  f~-~176 ... dx and make 

the change of  variables x to - x in f~ |  ... dx, we see that  

II  - I = r kq(x - ~q) + ko,(x + %) 
oo \ q = l  

\ q =  1 / 1  

12-1 

\ q = l  

For  x _<_ 0 we have 

and 

O,-1 O,-1 
Z k~(x -~q )  >- ~ k~(x+~q) 

q = l  q-~l 

ke(x  + % )  > ko,(x - rlo). 

F r o m  the assumptions on r it is clear that  H - I => 0 or  I <= II. We may  then 

choose r/' = r/o , _  i and step by step reduce all the r/q to r/l, so that  finally 

Suppose that  T :  R n ~  R" is cont inuous.  T can be lifted to a mapping  of  Xt '+ 

into the positive Borel measures on R"; we call this mapping  T also. I f # e . i r  + 

and A ~ R" is a Borel set then 

TI~(A) = p ( T -  IA). 
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In particular we will deal here with the case where M is an affine subspace of 

R n and T = PM is the orthogonal projection onto M. 

THEOREM 1. Let d~ satisfy the assumptions of Lemma 1. Let k be a kernel on 
R n such that for i >= d + 1, 0 <- d <-n- l ,  k is even in xi and non-increasing as a 
function of xi for xi >= O. Finally, let M be the affine subspace 

X d +  1 ---~ ad+l,  " " , X  n ~ a n. 

Then, for all # ~ .Ill +, 

~ cP(k*#)(x)dx < ~ 

PROOF. We break the proof  up into special cases of increasing generality 

and pass from one to the next by simple approximations. 

Case 1. /~ a finite linear combination of Dirac measures; k ec~c(Rn ). 
We take 

o 
].1 = ~ mqfir 

q=l 

where m , >  O. We fix the values of xl , '" ,xn-1 and set 

k~(x,) = m~k(x 1 . . . .  ~ ) ,  ,xn-1 - ~)1,  xn) for q = 1, ..., Q. 

If  we set t/~ = ~q), r /=  a n and let P be the orthogonal projection onto x n = an, 

it is clear from Lemma 1, that 

f q~(k.~)(x)dx,,< f c#(k.Pp)(x)dx,,. 

Integrating with respect to x~,. . . ,xn_l we then have 

f r  <= f ep(k,P,u)(x)dx. 

We now apply this inequality to the successive projections of # until we reach PM~. 

Case 2. /~ compact support; k~ '~(Rn).  

Let K = supp /~. It is well known that there exists a sequence of measures 

#i ~ ./~'+(K) each of which is a finite linear combination of Dirac measures and 

I]/t, II1 = II/~ II" #' ~ /~  weakly. 
It is clear that 

II PM , II, -- II II, = II II, and PM/~," PM# weakly. 

Therefore 
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k*l~(x) ~ k*~(x) 
and 

k.Pu#i(x ) .-, k.PM/2(x) 

for all x e Nn. From Lebesgue's Dominated Convergence Theorem we easily 

deduce the convergence of  the respective energies and hence, from case 1, the 

inequality. 

Case 3. /2 compact support; k bounded with compact support. 

Given 0 < e  < 1, let X, be the indicator function of the cube Ix, l =< e,..., I xn I 

< e. Set k,(x)=~-nX~* k(x). The functions k, e c~c(R) and satisfy the assumptions 

of our theorem since k does. The convolutions k, . /2 and k , .  P~/2 are bounded 

independent of e and 

f [(k,-k) , /2(x)[dx,  I [(k~-k)*PM/2(x)ldx-*O 

as e ~ 0. Since q~ satisfies a Lipschitz condition on every finite interval, it is clear 

that the energies of/~ and P~#  with respect to the k, converge to the respective 

energies with respect to k. The inequality then follows from the preceding case. 

Case 4. /2 compact support; k general. 

By truncating k and cutting it offfor large values of Ix I we can produce a sequence 

{k/} satisfying the conditions of Case 3 and 

ki(x) ~ k(x) 

for all x e Nn. Apply Lebesgue's Monotone Convergence Theorem. 

Case 5. ~ general; k general. 

If  X, is the indicator function of the cube [xl I =< i, . . . ,  ]x~ [ < i define/2i = )~,p. 

Then, from Case 4, 

f f f ~(k*PM/2)(x)dx. 

Since, as i -~ oo, the energy of/2~ tends to the energy of/2, we are finished. 
Q.E.D. 

THEOREM 2. Let ~ satisfy the conditions of Lemma 1. Let k be a kernel on 
R ~ which is spherically symmetric and non-increasing as l xl increases. 

Then, if M is any affine subspace of ~ and it ~ d l  +, 

f (D(k,/2)(x)dx <__ f (D(k,P~/2)(x)dx. 
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PROOF. If  d = dim M < n then defineM o by 

Xd+ 1 = 0, ..., X n =0.  

There is an isometry R: En _.,~n for which R(M) = M o. Hence 

PM= R-1PMoR. 

Since the energy is invariant under R, the inequality follows from Theorem 1. 

Q.E.D. 

3. Continuity of  potentials 

THEOREM 3. Let k satisfy the assumptions of Theorem 2. I f  M is an affine 

subspace of R n, then 

Ck,p(PMA) < Ck,p(A), 

for all A c R ~. 

PROOF. First we prove it for A = K, a compact set. I f  v is a test measure for 

ek,p(PMK) then it is carried by PMK. By the Hahn-Banach Theorem we can easily 

produce # ~ / d + ( K )  such that PM# = V. Hence [[ #[[1 = 1I vt[1 and by Theorem 2, 

# is a test measure for Ckp(K ). Hence 

ek,p(PMK) < Ck,p(K). 

= ~l/p (see th. 8, [3]). However, for al lanalytic sets, Ckp "~k,p 

If  A is a countable union of compact sets (i.e. A is a K,-set) there is a sequence 

of compact sets, K~ ~ A; therefore PMKi ~ PMA also. It is known that under these 

conditions 

Ck,p(Ki) ~ Ck,p(A ) and Ck,p(PMKi) ~ Ck, p (PMA); 

see corollary on p. 265 [3]. 

To treat the general case let G ~ A be open. Then 

Ck.t,(PMA) <= Ck,p(PMG ) <= Ck.p(G ). 

Since Ck. p is an outer capacity we are finished; see theorem 1, [3]. 
Q.E.D. 

THEOREM 4. Let k satisfy the assumptions of Theorem 2 and further let k 

be locally Lebesgue integrable with liml~l_.| = 0. Let M be an affine subspace 

o f ~  ~. 

Then, for f e.~p and e > O, there exists a closed set F ~ M such that 
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Ck,p( M ,'~ F) < 

and 

Hence, 

k*f~ C~o(F + M J" ). 

k*feC~o(x + M • Ckp-a.e. in M. 

Let {f,) be a sequence strongly convergent to f in Lap. Then there is a subsequence 

{fr} such that given 8 > O, there exists a closed set F c M with the property 

Ck,p(M "" F) < e 

and 

Hence, 

k , f r  -o k , f  in C~o(F + ML). 

k*fi, -o k*f  in Cgo(X + M a') Ck,p-a.e. in M. 

PROOF. There exists a sequence {fi} in c~c(R" ) such that f i - o f  strongly in Lap 

Clearly 

k,f ,  ~ ego(R" ). 

For some subsequence {fr} 

k*fi. ~ k*f Ck.p-a.u.; 

see theorem 4, [3]. Since Ck.p is an outer capacity there is an open set G such that 

C~ ,( G) < 

and 
k*fe -o k * f  uniformly on ~" ~ G. 

We define 

F = M ~ PuG. 

The first part of our theorem then follows from Theorem 3. The second part is 

proved by practically the same argument. Q.E.D. 

THEOREM 5. Let M be an affine subspace of ~" and let m be an integer 

O=<m<ct .  

For f r Lap and ~ > 0 there exists a closed set F ~ M such that 

B~_m,p(M .., F) < e 
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and 

0 p 

for all fl, Ifll < m. Hence for such fl, 

/ ' ~ 8  p 
~-ff-ff ) (g,  . f )E ~o (x  + M L) B , _ ,  fa .e .  in M.  

Let {fz} be a sequence strongly convergent to f in .LPp, Then there is a subsequence 

{f~.} such that given z > O, there exists a closed set F ~ M with the property 

B~,-m p(M ,.~ F) < 

and 

for all fl, 1 fl I < m Hence, for such fl, 

0 
in + M B,_ ,  ,-a.e. in . .  

PROOF. If  t f l I < ~  then 

( ~ ) ( g ~  * f ) ( x ) =  g~-ItJ I * flJ(x) B=-i,Lp-a.e. 

where fa e &Pp. Furthermore the linear map f -+ft~ is continuous from Lar into Lap; 

see section 13, I-2]. Also if I/~[ __< m, then B,-r , ,p(A)  < B=-IaI.r(A); this is a 

simple consequence of the fact that yg=(x) dx = 1. Our theorem then follows 

from Theorems 3 and 4. 
Q.E.D. 

RE~e~RKS. Of course Theorems 4 and 5 are sometimes devoid of content, for it 

is possible that Ck.p(M)= 0 or B~_~.p(M)= 0. However in the case of Bessel 

potentials, if Hd is the d-dimensional Hausdorff measure on R n, 

B~_,~.p(A) = 0 implies Ha(A) = 0 

for d > max(n - (~ - re)p,0); see theorem 22, [3]. Therefore if 

d i m M  >___ d > max(n - (~ - m)p,O), 

Theorem 5 is non-trivial and is also non-trivial with Hd-a.e. in place of B~_m,fa.e. 

Furthermore, if we take d = dim M and use Sobolev's Inequality for traces on 

a ~ n e  subspaces in the manner of theorem 20 of [3], we can substitute 
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Ha(M ~ F ) <  e for B,-m.p(M ~ F ) <  e. For more detailed results on relations 

between Bessel capacities and Hausdorff measures see [1]. 

Note the duality implicit in Theorem 5. For x ~ M, (~/Ox) p (g, , f )  is continuous 

on x + M ;  B,_m,p-a.e. on M; for x ~ M 1, (~/Ox) p (g, *f)  is B~_,, fa .c .  on x + M 

everywhere on M ~  

If  u e W"P(~"), the usual Sobolev space, then 

u(x) = g , , f ( x )  a.e. 

where fe  ~ p  and the map u ~ f i s  an isomorphism of W'P(~ ") onto Lap. It follows 

that if for x we define 

t~(x) = approx, limy.,.~u(y) 

then tT(x) is defined B,.p-a.e. and 

~(x) = g, , f ( x )  B,,p-a.e. 

Further, if < ~ then 

P 
(-~--x)~7(x) g,-lal*f~(x) B,-lpl.fa.e- 

where fp ~s and the map u ~fp  is continuous from W"P(R ") into 5ep; 

see section 13, [2]. I f  u ~ W~o~(f~) and q5 ~ cg~o(f~) (~ an open subset of ~") then the 

map u ~ ~bu is continuous from W~o~(f~) into W"P(R"). I f  we define ~7(x) as above 

for x e f~ then 

a B 0 ~ 

for IPt< " 
It is now possible to state a version of Theorem 5 for the Sobolev spaces 

W~oc(f~) and W~o'P(f~). 

COROLL~d~Y. Let M be an affine subspace o fR  n and let m be an integer 0 <= m 

For u ~ W~of (~) there exists a closed set F c PMf~ such that 

B~_~,~(P~a ~ F) < 

and 

c3 # 
-~--) ~ e ~lo~((F + M ' )  ~ f~) 
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for all fl, lfll <- m. Hence for such fl, 

[ \ 0  p 
(-~x ) ff ~ c~'~ + M l )  ~ f~) B~_m p-a.e, in P ~tfL 

Let {ul} be a sequence convergent to u in "P Wtoc(fl). Then there is a subsequence 

{Ur} such that given ~ > O, there exists a closed set F ~ PMf~ with the property 

B~_m,p(PM~ "~ F) < e 

and 

for all [3, l[3l <_ m. Hence, for such fl, 

Wtoc(f~) by W~'P(f~) and rflo c by fro all the above statements remain If  we replace ,,v 

true. 
In the case of W~'P(f~) the above result tells us how ~ and its partial derivatives 

continuously assume zero boundary values. 
We now wish to study continuity in parallel affme subspaces not orthogonal to 

M. In a sense we have already done this, since such a set of afflne subspaces can 

be indexed by an affine subspace orthogonal to them. Hence the question is s!mply 

one of changing the indexing set. 

LEMMA 2. Let T be a 1 - 1 map of N" onto itself which, together with its 

inverse T -1, satisfies a Lipschitz condition. 

Given p, 0 < p < ~ ,  if A c ~" with diam A <= p then 

B,,p(TA) < Q B~.p(A); 

Q is a constant independent of A. 

PROOF. Let f be a test function for B, p(A); then 

g, . f ( x )  > 1 for all x ~ A. 

If  Xo ~ A is fixed, A c {I X-Xo [ < p} = B(xo, p). We may assume 

IIf 112 < 2B~,p(B(O,p)). 

Since g, is exponentially decreasing at ~ (see section 2, [2]) 
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f g '(x)dx <= 2 B~,lt(p- I)(B(O,p)), 
HzI~_a~} 

if 'a '  is sufficiently large. We fix such a value of 'a '  and let X be the indicator 

function of B(x o, (a + 1)p); we set 

h(x) = 2Z(x)f(x ). 

Then 

and thus 

g a * h ( x ) > l  for x e A ,  

g~ * h(T-  ix) > 1 for x ETA.  

By making a change of variables in the convolution we get 

f g~(Lrl(X - z ) )h(T-Iz)  J r - t ( z ) d z  > 1 for x ~  TA, 

where Lr is the Lipschitz constant for T and J r - ,  is the Jacobian of T -  1. Since 

h(T- l z )  vanishes outside T(B(xo, (a + 1)p)), for x e TA we need consider in the 

above integral, only points z such that Ix - z[ < Lr(a + 2)p. From the known 

asymptotic behavior of g~ in the neighborhood of zero (see section 2, [2]) we get 

g , (Lr-  ix) < c g~(x) for I x [ < Lr(a + 2)p, 

where e is a constant independent of x. Therefore eh(T-Xz) Jr-,(z) is a test 

function for B~.p(TA) and we get 

B~,p(TA) < (2c)P(ess sup Jr)  (ess sup Jr-*)P [If I1~ 

from which the inequa]ity follows. 
Q.E.D. 

If  R ~ is the affine direct sum of M and N, we define PM N to be the projection of 

1~ n onto M, parallel to N. 

THEOREM 6. Given 0 < p < oo , if A c R ~ and diam Pu NA < p then 

B~.p(PM NA) <= {2 B,.p(A), 

where (2 is independent of A. 

PROOF. The projection PN • restricted to M has an affine extension to T, 

mapping 1~ onto itself. PM.N = T -  ~ P ~ .  The result is a consequence of Lemma 2 

and Theorem 3. Q.E.D. 



Vol. 11, 1972 BESSEL POTENTIALS 283 

The  only essent ia l  change we must  make  in the s ta tement  o f  T h e o r e m  4 in 

the case M and  N not or thogona l ,  is tha t  we mus t  first choose ,  let  us say, a b o u n d e d  

re la t ive  open set G = M,  then  take  F ~ G and  wri te  B~-m.p(G ~ F)  < e in p lace  

o f  B~_m.p(M ~ F ) <  e. A s imi lar  change mus t  be made  in the s ta tement  o f  

Theo rem 5. 
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